You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 January 2009Optical design of prism-grating-prism imaging spectrometers
Imaging spectrometers can provide imagery and spectrum information of objects and form so-called three-dimensional
spectral imagery, two spatial and one spectral dimension. Most of imaging spectrometers use conventional spectroscopic
elements or systems, such as reflective diffraction gratings, prisms, filters, spatial modulated interferometers, and so on.
Here a special imaging spectrometer which is based on a novel cemented Prism-Grating-Prism (PGP) is reported. Its
spectroscopic element PGP consists of two prisms and a holographic transmission volume grating, which is cemented
between these prisms. The two prisms mainly function as beam deviation, the grating as a disperser. In addition to the
high light efficiency of the volume gratings that is required for high spectral resolution, the cementing difficulty when
surface relief gratings are used can be avoided due to its voluminal characteristic. The PGP imaging spectrometer has
advantages of direct vision, dispersion uniform, compactness, low cost, and facility to be used. The principle, structure,
and optimized design of the PGP imaging spectrometer are given in detail. Its front collimation optics and rear focusing
lenses are same so as to reduce its cost further. The spectral coverage, resolution, and track length of the designed system
are respectively visible light from 400nm to 800nm, 1.6nm/pixel, and 85mm. From its performance evaluation, it is
shown that the PGP imaging spectrometer has the potentiality to be used in microscopic hyperspectral imagers and
hyperspectral imaging remote sensors.
The alert did not successfully save. Please try again later.
Shanbing Zhu, Minxue Tang, Yiqun Ji, Guangbiao Gong, Ruirui Zhang, Weimin Shen, "Optical design of prism-grating-prism imaging spectrometers," Proc. SPIE 7156, 2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments, 71560L (26 January 2009); https://doi.org/10.1117/12.806309