You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 February 2009Investigation of n-side cooling in regards to bar geometry and packaging style of diode laser
The packaging of high power diode laser bars requires a high cooling efficiency and long-term stability. Due to the
increasing output power of the diode laser bars the cooling performance of the packaging becomes more important.
Nowadays micro channel heat sinks seem to be the most efficient cooling concept in regard to high power applications.
The active area of the p-side down mounted laser bar is located directly above the micro channels. In other applications
where conductive cooled heat sinks are used the bars are mounted on copper CS mount, CuW submount or high
performance materials.
All these packaging ideas use wire bonds or thin copper sheets as a n-contacts. The thermal advantage of these contacts
can be neglected.
N-contact cooling is typically used to achieve new records of optical output power in the labs.
These studies analyze the properties of an additional n-contact cooling. The cooling performance of a package cooled on
both sides can be improved by more than 20% when compared with typical wire bonds or metal sheets.
Different packaging styles with metal sheets, heat spreaders (expansion matched) and active n-side cooling are
investigated. The effect of n-side cooling with regards to the fill-factor and cavity length is analyzed also.
The first part of this paper approaches the topic theoretically. Simulations are carried out and show the advantages and
differences of different package styles in comparison to bar geometries variations. The second part of the studies
characterizes and analyses fabricated samples made out of copper in view of cooling performance, handling, and induced
stress. The results of different bar geometries and packaging styles are compared and guidelines for n-side cooling are
developed.
The alert did not successfully save. Please try again later.
Michael Leers, Thomas Westphalen, Rajiv Pathak, Christian Scholz, "Investigation of n-side cooling in regards to bar geometry and packaging style of diode laser," Proc. SPIE 7198, High-Power Diode Laser Technology and Applications VII, 71980H (23 February 2009); https://doi.org/10.1117/12.809508