You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 February 2009Parametric investigation of solder bumping for assembly of optical components
Laser based solder bumping is a highly flexible and fast approach for flux-free soldering of micro-optical components in
complex 3D geometries with localized and time restricted energy input. Solder joints provide superior mechanical
strength, higher radiation stability, humidity resistance and a good thermal and electrical conductivity compared to
adhesive bonding. Due to the good long term stability solder joints are feasible for the integration of optical, mechanical,
electronic, and MEMS/MOEMS devices in multi functional hybrid optical assemblies. Comparative studies of solder
bumping of optical components with sputtered thin film metallization on platforms made of Alumina (Al2O3) and Low
Temperature Cofired Ceramics (LTCC) with both Au and AgPd thick film metallization were carried out using design of
experiment methods (DoE). The influence of the system parameters, laser pulse energy and duration, distance, incidence
angle and nitrogen pressure on targeting accuracy and bond strength were evaluated. The jetting of liquid solder spheres
within a localized nitrogen atmosphere improves wetting on the respective wetting surfaces and simplifies the joining
process due to integration of solder alloy preform handling and reflowing, thus showing great potential for a high degree
of automation.
The alert did not successfully save. Please try again later.
Thomas Burkhardt, Marcel Hornaff, Erik Beckert, Ramona Eberhardt, Andreas Tünnermann, "Parametric investigation of solder bumping for assembly of optical components," Proc. SPIE 7202, Laser-based Micro- and Nanopackaging and Assembly III, 720203 (24 February 2009); https://doi.org/10.1117/12.807986