You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
26 January 2009Quantum key distribution at GHz transmission rates
Quantum key distribution (QKD) channels are typically realized by transmitting and detecting single photons, and
therefore suffer from dramatic reductions in throughput due to both channel loss and noise. These shortcomings can be
mitigated by applying telecommunications clock-recovery techniques to maximize the bandwidth of the single-photon
channel and minimize the system's exposure to noise. We demonstrate a QKD system operating continuously at a
quantum-channel transmission rate of 1.25 GHz, with dedicated data-handling hardware and error-correction/privacy
amplification. We discuss the design and performance of our system and highlight issues which limit our maximum
transmission and key production rates.
The alert did not successfully save. Please try again later.
Alessandro Restelli, Joshua C. Bienfang, Alan Mink, Charles W. Clark, "Quantum key distribution at GHz transmission rates," Proc. SPIE 7236, Quantum Communications Realized II, 72360L (26 January 2009); https://doi.org/10.1117/12.809461