You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 January 2009Decoupling photo collection efficiency and color crosstalk from the quantum efficiency spectrum for the CMOS image sensor pixel development
Photo collection efficiency (proportional to the sensitivity of the photo sensor) and color crosstalk, both optical and electrical, are extremely important CMOS image sensor (CIS) pixel parameters. In measured QE data, photo collection efficiency and crosstalk information are mixed and it is difficult to disentangle the contributions of each to the raw QE spectrum. In our pixel optimization work, it is desirable to extract each component and to further separate the contribution of the color filter array (CFA) from the fundamental processes in and above the Silicon. In this paper, a new approach is introduced to extract the QE data related to the Si processing and decompose it into two components, the Mono QE and crosstalk spectrum, respectively. Using this approach one may gauge the impact of pixel structure differences, realize the sensor design goals to achieve the targeted system performance.
The alert did not successfully save. Please try again later.
Yang Wu, Philip J. Cizdziel, Howard E. Rhodes, "Decoupling photo collection efficiency and color crosstalk from the quantum efficiency spectrum for the CMOS image sensor pixel development," Proc. SPIE 7250, Digital Photography V, 725004 (19 January 2009); https://doi.org/10.1117/12.805743