You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 March 2009An automated image segmentation and classification algorithm for immunohistochemically stained tumor cell nuclei
As medical image data sets are digitized and the number of data sets is increasing exponentially, there is a need for
automated image processing and analysis technique. Most medical imaging methods require human visual inspection
and manual measurement which are labor intensive and often produce inconsistent results. In this paper, we propose an
automated image segmentation and classification method that identifies tumor cell nuclei in medical images and
classifies these nuclei into two categories, stained and unstained tumor cell nuclei. The proposed method segments and
labels individual tumor cell nuclei, separates nuclei clusters, and produces stained and unstained tumor cell nuclei
counts. The representative fields of view have been chosen by a pathologist from a known diagnosis (clear cell renal cell
carcinoma), and the automated results are compared with the hand-counted results by a pathologist.