You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 March 2009Interactive segmentation in multimodal brain imagery using a Bayesian transductive learning approach
Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical
image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or
semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test
set given a small portion of label information. In this paper we propose a novel algorithm for interactive segmentation
using transductive learning and inference in conditional mixture naïve Bayes models (T-CMNB) with spatial
regularization constraints. T-CMNB is an extension of the transductive naïve Bayes algorithm [1, 20]. The multimodal
Gaussian mixture assumption on the class-conditional likelihood and spatial regularization constraints allow us to
explain more complex distributions required for spatial classification in multimodal imagery. To simplify the estimation
we reduce the parameter space by assuming naïve conditional independence between the feature space and the class
label. The naïve conditional independence assumption allows efficient inference of marginal and conditional
distributions for large scale learning and inference [19]. We evaluate the proposed algorithm on multimodal MRI brain
imagery using ROC statistics and provide preliminary results. The algorithm shows promising segmentation
performance with a sensitivity and specificity of 90.37% and 99.74% respectively and compares competitively to
alternative interactive segmentation schemes.
The alert did not successfully save. Please try again later.
Noah Lee, Jesus Caban, Shahram Ebadollahi, Andrew Laine, "Interactive segmentation in multi-modal brain imagery using a Bayesian transductive learning approach," Proc. SPIE 7260, Medical Imaging 2009: Computer-Aided Diagnosis, 72601W (3 March 2009); https://doi.org/10.1117/12.811675