You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 April 2009Double patterning process with freezing technique
Double patterning is one of the most promising lithography techniques for sub-40nm half-pitch device
manufacturing. Several variations of double patterning processes have been reported by research groups, including a
dual-trench process (litho-etch-litho-etch) and a dual-line process (litho-litho-etch). Between these, the dual-line process
attracts the most attention because it is a simple process and achieves high throughput. However, there is concern that
the second lithography process damages the first lithography patterns in the dual-line process. Therefore, new
technology must be developed to keep the configuration of first lithography patterns during the second lithography step,
and to make this patterning process practical.
Recently, we succeeded in forming 32 nm half-pitch LS lithography patterns by the introduction of a new "freezing"
step. This step involves covering the first lithography pattern with a chemical freezing material to prevent damage by the
second lithography process. This process, the so called "litho-freezing-litho-etch" process, will achieve higher
throughput and lower cost compared to litho-etch-litho-etch.
In this study, the performance of this chemical freezing double patterning process is investigated for various
applications using a hyper NA immersion exposure tool. Imaging results including process window and etching results
of sub-30nm half-pitch LS and 40nm half-pitch CH with this freezing process are shown. Additionally, items such as
critical dimension uniformity and defect inspection using the freezing process were reviewed.