You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 May 2009Infrared signatures of Bacillus bacteria: clear IR distinctions between sporulated and vegetative cells with chemical assignments
This paper highlights the distinctions between the infrared (IR) absorption spectra of vegetative versus sporulated Bacillus bacteria. It is observed that there are unique signatures clearly associated with either the sporulated or the vegetative state, and that vegetative cells (and associated debris) can contribute to the spore spectra. A distinct feature at ~1739 cm-1 appears to be unique to vegetative cell spectra, and can also be used as an indicator of vegetative cells or cell debris in the spore spectra. The data indicate the band is caused by a phospholipid carbonyl bond and are consistent with, but do not prove it to be, either phosphatidyl ethanolamine (PE) or phosphatidyl glycerol (PG), the two major classes of phospholipids found in vegetative cells of Bacillus species. The endospore spectra show characteristic peaks
at 1441, 1277, and 1015 cm-1 along with a distinct quartet of peaks at 766, 725, 701, and 659 cm-1. These are clearly
associated with calcium dipicolinate trihydrate,
CaDP•3H2O. We emphasize that the spore peaks, especially the quartet, arise from the calcium dipicolinate trihydrate and not from dipicolinic acid or other dipicolinate hydrate salts. The
CaDP•3H2O vibrational peaks and the effects of hydration were studied using quantum chemistry in the PQS software package. The quartet is associated with many motions including contributions from the
Ca2+ counterion and hydration waters including Ca-O-H bends, H2O-Ca-O torsions and O-C-O bends. The 1441 and 1015 cm-1 modes are planar pyridine modes with the 1441 mode primarily a ring C-N stretch and the 1015 mode primarily a ring C-C stretch.
The alert did not successfully save. Please try again later.
Timothy J. Johnson, Stephen D. Williams, Nancy B. Valentine, Yin-Fong Su, Helen W. Kreuzer-Martin, Karen Wahl, Joel B. Forrester, "Infrared signatures of Bacillus bacteria: clear IR distinctions between sporulated and vegetative cells with chemical assignments," Proc. SPIE 7304, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing X, 730407 (8 May 2009); https://doi.org/10.1117/12.823178