You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 April 2009The performance of a multi-sensor detection system based on phage-coated magnetoelastic biosensors
In this paper the performance of a magnetoelastic biosensor detection system for the simultaneous identification of B.
anthracis spores and S. typhimurium was investigated. This system was also designed for selective in-situ detection of
B. anthracis spores in the presence a mixed microbial population. The system was composed of a reference sensor
(devoid of phage), an E2 phage sensor (coated with phage specific to S. typhimurium) and a JRB7 phage sensor (coated
with phage specific to B. anthracis spores). When cells/spores are bound to the specific phage-based ME biosensor
surface, only the resonance frequency of the specific sensor changed. The instantaneous response of the multiple
sensor system was studied by exposing the system to B. anthracis spores and S. typhimurium suspensions sequentially.
A detection limit of 1.6×103 cfu/mL and 1.1×103 cfu/m was observed for JRB7 phage sensor and E2 phage sensor,
respectively. Additionally, the performance of the system was also evaluated by exposure to a flowing mixture of B.
anthracis spores (5×101-5×108 cfu/ml) in the presence of B. cereus spores (5×107 cfu/ml). Only the JRB7 phage
biosensor responded to the B. anthracis spores. Moreover, there was no appreciable frequency change due to
non-specific binding when other microorganisms (spores) were in the mixture. A detection limit of 3×102 cfu/mL was
observed for JRB7 phage sensor. The results show that the multi-sensor detection system offers good performance,
including good sensitivity, selectivity and rapid detection.
The alert did not successfully save. Please try again later.
S. Huang, H. Yang, R. Lakshmanan, S. Li, I. Chen, V. A. Petrenko, J. M. Barbaree, B. A. Chin, "The performance of a multi-sensor detection system based on phage-coated magnetoelastic biosensors," Proc. SPIE 7312, Advanced Environmental, Chemical, and Biological Sensing Technologies VI, 731208 (30 April 2009); https://doi.org/10.1117/12.818942