You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 May 2009GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems
Research from the Institute for Collaborative Biotechnologies (ICB) at the University of California at Santa Barbara
(UCSB) has identified swarming algorithms used by flocks of birds and schools of fish that enable these animals to move
in tight formation and cooperatively track prey with minimal estimation errors, while relying solely on local communication
between the animals. This paper describes ongoing work by UCSB, the University of Florida (UF), and the Toyon
Research Corporation on the utilization of these algorithms to dramatically improve the capabilities of small unmanned
aircraft systems (UAS) to cooperatively locate and track ground targets.
Our goal is to construct an electronic system, called GeoTrack, through which a network of hand-launched UAS
use dedicated on-board processors to perform multi-sensor data fusion. The nominal sensors employed by the system
will EO/IR video cameras on the UAS. When GMTI or other wide-area sensors are available, as in a layered sensing
architecture, data from the standoff sensors will also be fused into the GeoTrack system. The output of the system will be
position and orientation information on stationary or mobile targets in a global geo-stationary coordinate system.
The design of the GeoTrack system requires significant advances beyond the current state-of-the-art in distributed
control for a swarm of UAS to accomplish autonomous coordinated tracking; target geo-location using distributed sensor
fusion by a network of UAS, communicating over an unreliable channel; and unsupervised real-time image-plane video
tracking in low-powered computing platforms.
The alert did not successfully save. Please try again later.
Prabir Barooah, Gaemus E. Collins, João P. Hespanha, "GeoTrack: bio-inspired global video tracking by networks of unmanned aircraft systems," Proc. SPIE 7321, Bio-Inspired/Biomimetic Sensor Technologies and Applications, 73210F (4 May 2009); https://doi.org/10.1117/12.820490