You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 May 2009Supercontinuum laser sensing of atmospheric constituents
Extending our developments of a previously reported supercontinuum lidar system has increased the capability for
measuring long path atmospheric concentrations. The multi-wavelength capability of the supercontinuum laser source
has the advantage of obtaining multiple line differential absorption spectra measurements to determine the
concentrations of various atmospheric constituents. Simulation software such as MODTRANTM 5 has provided the
means to compare and evaluate the experimental measurements. Improvements to the nanosecond supercontinuum laser
fiber coupled transceiver system have allowed open atmospheric path lengths greater than 800 m. Analysis of
supercontinuum absorption spectroscopy and measurements utilizing the updated system are presented.
The alert did not successfully save. Please try again later.
Perry S. Edwards, Andrea M. Wyant, David M. Brown, Zhiwen Liu, C. Russell Philbrick, "Supercontinuum laser sensing of atmospheric constituents," Proc. SPIE 7323, Laser Radar Technology and Applications XIV, 73230S (2 May 2009); https://doi.org/10.1117/12.818697