You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 May 2009Characterization of modes excited in a nonlinear photonic crystal fibre using low coherence interferometry
We have excited both LP01 and LP11 modes using a high magnification objective lens (60×) in a nonlinear photonic
crystal fibre (PCF) of core diameter 2.2μm and simultaneously detected the modes using low coherence interferometry.
We placed the nonlinear PCF of length ~11cm in one arm of an interferometer, and then interfered the output with light
in the reference arm onto a photodetector via a single mode collection fibre positioned at a point in a near-field image of
the fibre endface. More than one fringe packet was observed in the interferogram, indicating the presence of two modes
propagating in the fibre core. To uniquely identify the dispersion curves we need to know which mode corresponds to
each fringe packet in the interferogram. In the same experimental setup we replaced the photodetector with a digital
CCD camera to record the 2-D interference pattern across the image as function of group delay. A Fourier analysis
technique was used to compute the intensity and phase of the mode field patterns corresponding to the various
interferograms. Using this technique we can simultaneously measure the group velocity dispersion and the mode profile
with phase information of the modes excited in a multimode PCF.
The alert did not successfully save. Please try again later.
P. Nandi, W. J. Wadsworth, T. A. Birks, J. C. Knight, "Characterization of modes excited in a nonlinear photonic crystal fibre using low coherence interferometry," Proc. SPIE 7357, Photonic Crystal Fibers III, 73570B (19 May 2009); https://doi.org/10.1117/12.820710