You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 May 2009Semi-automated repair verification of aerial images
Using aerial image metrology to qualify repairs of defects on photomasks is an industry standard. Aerial image
metrology provides reasonable matching of lithographic imaging performance without the need for wafer prints.
Utilization of this capability by photomask manufacturers has risen due to the increased complexity of layouts
incorporating RET and phase shift technologies. Tighter specifications by end-users have pushed aerial image
metrology activities to now include CD performance results in addition to the traditional intensity performance results.
Discussed is the computer implemented semi-automated analysis of aerial images for repair verification activities.
Newly designed user interfaces and algorithms could guide users through predefined analysis routines as to minimize
errors. There are two main routines discussed here, one allowing multiple reference sites along with a test/defect site on
a single image of repeating features. The second routine compares a test/defect measurement image with a reference
measurement image.
This paper highlights new functionality desirable for aerial image analysis as well as describes possible ways of its
realization. Using structured analysis processes and innovative analysis tools could lead to a highly efficient and more
reliable result reporting of repair verification metrology.
The alert did not successfully save. Please try again later.
Eric Poortinga, Thomas Schereubl, Rigo Richter, "Semi-automated repair verification of aerial images," Proc. SPIE 7379, Photomask and Next-Generation Lithography Mask Technology XVI, 73792D (11 May 2009); https://doi.org/10.1117/12.824327