You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
23 September 2009Revisit to aberration: a simulation study of lens aberration induced
overlay misalignment and its experimental validation
Overlay (O/L) misalignment (M/A) is induced from numerous sources including metrology error and stage control error,
and aberration in projection optics. However, as design rule become smaller, aberration induced O/L M/A is evaluated to
take considerable portion in the overlay budget. This paper focuses on O/L M/A issues from projection optics. We
presents a simulation analysis of M/A between contact hole (C/H) pattern and line & space (L/S) pattern at 65nm node
based on the aberration data from actual lithography tool to single out the main source of O/L M/A.. The study shows
that the aberration in projection optics can induce considerable M/A and the conventional overlay keys do not represent
this M/A properly. Among the Zernike fringe polynomials, the third-order behavior (D3) in Z2 (tilt) is found to be the
critical source of misalignment. This portion of the aberration is resulted from the lens heating (LH) and can be corrected.
However, this correction method needs improvements because its controllability over LH is not enough for the complete
correction of LH induced M/A. Besides D3, Z10 (3-Foil) are found to be the major sources for pattern shift in C/H
patterns, and Z7 and Z14 (Coma x) are found for L/S patterns.
The alert did not successfully save. Please try again later.
Hoyeon Kim, Sung-Woo Lee, Byeongcheol Lee, Sanghwa Lee, Kyoungyong Cho, Seong-Woon Choi, Chan-Hoon Park, "Revisit to aberration: a simulation study of lens aberration induced overlay misalignment and its experimental validation," Proc. SPIE 7488, Photomask Technology 2009, 74883E (23 September 2009); https://doi.org/10.1117/12.833345