You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 October 2009Polarized reflectance characteristics of plant canopies including atmospheric aerosol optical properties
Xinli Hu,1,2,3 Xingfa Gu,1,3 Tao Yu,1,3 Qingyan Meng1,3
1Institute of Remote Sensing Applications, CAS (China) 2Graduate Univ. of Chinese Academy of Sciences (China) 3The Ctr. for National Space-borne Demonstration (China)
This paper presents a large set of spectral and directional signatures of the polarized reflectance acquired over various
plant canopies in different atmospheric conditions. An instrument has been developed for measuring the BPDF (Bidirectional Polarization Distribution Function) of plant canopies in the field. Polarized multi-wavelength analytical physically-based model was developed. For the analysis of polarization measurements studied, it is found that although spectral variations in the polarized reflectance are observed, the ratio of the two wavelength polarized reflectance is stable. The ratio is related to atmospheric aerosol optical depth. Our results also suggest that using the correlation
between the polarized reflectance of the short wave infrared band (SWIR) with those in the visible rang can eliminate the effect which caused by the plant canopies geometric structure. On the other hand, since the model accurately predict the polarized reflectance relations between the short wave infrared bands and the visible rang, they can be used to discriminate the aerosol contribution from the surface of the plant canopies cover in the retrieval procedure.