You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 October 2009A new multilayer model for the investigation of lunar regolith depth
Passive microwave remote sensing was firstly applied to detect the moon by Chang'E-1 satellite with a four channel
microwave radiometer. Its primary goal is to detect the thickness of lunar regolith and to assess the content of 3He. There
are remained theoretical problems to be systematically solved, which include to research the microwave radiation
transfer properties and to establish the suitable model to inverse lunar regolith depth. Considering the variation of these
factors influencing on the brightness temperature, a new multi-layer microwave transfer model to inverse the depth of
lunar regolith is presented. The physical factors among top lunar regolith influencing the brightness temperature change
sharply with the thickness, so the top lunar regolith is divided subtly. On the contrary, the deep lunar regolith where the
factors vary slowly with the thickness is divided roughly. Then, by applying the fluctuation dissipation theorem, the
brightness temperatures obtained from four frequency channels (3.0GHz, 7.8GHz, 19.35GHz, 37GHz) are simulated
based on the multi-layer model at different locations on the moon and at different times of a lunar day. In comparison the
calculated results with other models, it indicates that the proposed model has better stability and less calculation.
The alert did not successfully save. Please try again later.
Mingxing Zhou, Jianjiang Zhou, Fei Wang, Xiao Zhang, "A new multilayer model for the investigation of lunar regolith depth," Proc. SPIE 7498, MIPPR 2009: Remote Sensing and GIS Data Processing and Other Applications, 74980B (30 October 2009); https://doi.org/10.1117/12.832283