Translator Disclaimer
26 February 2010 Generalized atmospheric turbulence: implications regarding imaging and communications
Author Affiliations +
At present, system design usually assumes the Kolmogorov model of refractive index fluctuation spectra in the atmosphere. However, experimental data indicates that in the atmospheric boundary layer and at higher altitudes the turbulence can be different from Kolmogorov's type. In optical communications, analytical models of mean irradiance and scintillation index have been developed for a traditional Kolmogorov spectrum and must be revised for non-Kolmogorov turbulence. The image quality (resolution, MTF, etc.) is essentially dependent on the properties of turbulent media. Turbulence MTF must be generalized to include non-Kolmogorov statistics. The change in fluctuation correlations of the refractive index can lead to a considerable change in both the MTF form and the resolution value. In this work, on the basis of experimental observations and modeling, generalized atmospheric turbulence statistics including both Kolmogorov and non-Kolmogorov path components are discussed, and their influence on imaging and communications through the atmosphere estimated for different scenarios of vertical and slant-path propagation. The atmospheric model of an arbitrary (non-Kolmogorov) spectrum is applied to estimate the statistical quantities associated with optical communication links (e.g., scintillation and fading statistics) and imaging systems. Implications can be significant for optical communication, imaging through the atmosphere, and remote sensing.
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Norman S. Kopeika, Arkadi Zilberman, and Ephim Golbraikh "Generalized atmospheric turbulence: implications regarding imaging and communications", Proc. SPIE 7588, Atmospheric and Oceanic Propagation of Electromagnetic Waves IV, 758808 (26 February 2010);

Back to Top