You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 February 2010High performance short wavelength InP-based quantum cascade lasers
We review the development of high performance, short wavelength (3 μm < λ < 3.8 μm) quantum cascade lasers (QCLs)
based on the deep quantum well InGaAs/AlAsSb/InP materials system. Use of this system has enabled us to demonstrate
room temperature operation at λ ~ 3.1 μm, the shortest room temperature lasing wavelength yet observed for InP-based
QCLs. We demonstrate that significant performance improvements can be made by using strain compensated material
with selective incorporation of AlAs barriers in the QCL active region. This approach provides reduction in threshold
current density and increases the maximum optical power. In such devices, room-temperature peak output powers of up
to 20 W can be achieved at λ ~ 3.6 μm, with high peak powers of around 4 W still achievable as wavelength decreases to
3.3 μm.
The alert did not successfully save. Please try again later.
Dmitry G. Revin, J. Paul Commin, Shiyong Y. Zhang, Andrey B. Krysa, Kenneth Kennedy, John W. Cockburn, "High performance short wavelength InP-based quantum cascade lasers," Proc. SPIE 7616, Novel In-Plane Semiconductor Lasers IX, 761612 (12 February 2010); https://doi.org/10.1117/12.847188