You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 March 2010Fabrication and characterization of an indium tin oxide acoustoelectric hydrophone
Clinical ultrasound (US) imaging and therapy require a precise knowledge of the intensity distribution of the
acoustic field. Although piezoelectric hydrophones are most common, these devices are limited in terms of, for example,
type of materials, cost, and performance at high frequency and pressure. As an alternative to conventional acoustic
detectors, we describe acoustoelectric hydrophones, developed using photolithographic fabrication techniques, where the
induced voltage (phase and amplitude) is proportional to both the US pressure and bias current injected through the
device. In this study a number of different hydrophone designs were created using indium tin oxide (ITO). A constriction
of the current path within the hydrophone created a localized "sensitivity zone" of high current density. The width of this
zone ranged from 30 to 1000 μm, with a thickness of 100 nm. A raster scan of the US transducer produced a map of the
acoustic field. Hydrophones were evaluated by mapping the pressure field of a 2.25 MHz single element transducer, and
their performance was compared to a commercial capsule hydrophone. Focal spot sizes at -6 dB were as low as 1.75 mm,
comparing well with the commercial hydrophone measurement of 1.80 mm. Maximum sensitivity was 2 nV/Pa and up to
the 2nd harmonic was detected. We expect improved performance with future devices as we optimize the design.
Acoustoelectric hydrophones are potentially cheaper and more robust than the piezoelectric models currently in clinical
use, potentially providing more choice of materials and designs for monitoring therapy or producing arrays for imaging.
The alert did not successfully save. Please try again later.
Pier Ingram, Charles L. Greenlee, Zhaohui Wang, Ragnar Olafsson, Robert A. Norwood, Russell S. Witte, "Fabrication and characterization of an indium tin oxide acoustoelectric hydrophone," Proc. SPIE 7629, Medical Imaging 2010: Ultrasonic Imaging, Tomography, and Therapy, 76290O (12 March 2010); https://doi.org/10.1117/12.845631