You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 May 2010State of the art of quantum cascade photodetectors
The Quantum Cascade Detector (QCD) is a multiple quantum well photodetector working at low bias or zero bias. It has
a zero dark current occurring at 0V, together with a high photovoltaic photoresponse, since the QCD does not need any
applied field to improve the collection of electrons. QCDs have been tested at various wavelengths, from short
wavelengths (1.5 microns) up to THz waves, through the entire infrared spectrum (middle and long wavelengths).
Theory of transport in QCD is now well established, and leads to accurate calculations of current and noise in QCDs,
with a very good agreement with experimental results. Latest results and state of the art of performances of QCDs are
presented.
The alert did not successfully save. Please try again later.
Amandine Buffaz, Mathieu Carras, Laetitia Doyennette, Alexandru Nedelcu, Philippe Bois, Vincent Berger, "State of the art of quantum cascade photodetectors," Proc. SPIE 7660, Infrared Technology and Applications XXXVI, 76603Q (3 May 2010); https://doi.org/10.1117/12.853525