You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 May 2010Refractive x-ray optics made from polymer microstructures
Refractive X-ray lenses can be used effectively, to focus or collimate X-rays with photon energies clearly above 10 keV.
On the one hand parabolic Compound Refractive Lenses (CRLs) are suitable as imaging optics in high resolution X-ray
microscopy. The most recent developments are nanofocusing refractive X-ray lenses (NFLs). These show focal spot
sizes of less below 100 nm. On the other hand refractive X-ray lenses can provide a high photon flux when used as large
aperture condenser optics. Two types of refractive condenser optics made out of structures with triangular profile have
been developed at the Institute for Microstructure Technology (IMT) at the Karlsruhe Institute of Technology (KIT) and
have been tested at synchrotron sources in recent years. One type of special interest is the Rolled X-ray Prism Lens
(RXPL). These lenses are made of a rolled polymer foil structured with micro grooves with triangular profile. The
combination of such condenser optics and NFLs provides a basis for future hard X-ray microscopes.
The alert did not successfully save. Please try again later.
M. Simon, V. Nazmov, E. Reznikova, A. Last, J. Mohr D.D.S., P.-J. Jakobs, V. Saile, O. Bunk, C. Kewish, D. Batchelor, R. Simon, "Refractive x-ray optics made from polymer microstructures," Proc. SPIE 7716, Micro-Optics 2010, 77161B (13 May 2010); https://doi.org/10.1117/12.858894