You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) is fitted with three grisms for slitless spectroscopy.
In the UVIS channel there is one grism, G280, for the near-UV to visible range (200 - 400nm;
1.4nm/pix). The IR channel has two grisms: G102 for the shorter (800-1150nm; 2.45nm/pix) and G141 for the
longer (1100-1700nm; 4.65nm/pix) NIR wavelengths. Using Servicing Mission Observatory Verification (SMOV)
and Cycle 17 calibration data we have assessed the performance of the grisms. We have measured the fielddependent
trace locations and dispersion solutions and determined the throughputs. The trace and wavelength
solutions for the IR grisms were found to be linear functions, varying smoothly across the field of view. The UVIS
grism exhibits a highly bent trace and significantly non-linear dispersion solutions. The maximum throughputs
for the G102 and G141 grisms, including the telescope optics, are 41% at 1100 nm and 48% at 1450 nm, respectively.
Limiting magnitudes at S/N=5 and a 1h exposure are JAB=22.6 and HAB=22.9 for the G102 and G141
grisms, respectively. The calibration results are published in the form of sensitivity and configuration files that
can be used with our dedicated extraction software aXe to reduce WFC3 slitless data.
The alert did not successfully save. Please try again later.
H. Kuntschner, H. Bushouse, M. Kümmel, J. R. Walsh, J. MacKenty, "HST/WFC3 in-orbit grism performance," Proc. SPIE 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, 77313A (10 August 2010); https://doi.org/10.1117/12.856421