You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 July 2010Smart structures for deformable mirrors actuated by shape memory alloy
Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation.
Thermal activated Shape Memory Alloys are materials able to recover their original shape, after an
external deformation, if heated above a characteristic temperature. If the recovery of the shape is completely
or partially prevented by the presence of constraints, the material can generate recovery stress. Thanks to this
feature, these materials can be positively exploited in Smart Structures if properly embedded into host materials.
This paper will show the technological processes developed for an efficient use of SMA-based actuators embedded
in smart structures tailored to astronomical instrumentation. In particular the analysis of the interface with the
host material. Some possible modeling approaches to the actuators behavior will be addressed taking into account
trade-offs between detailed analysis and overall performance prediction as a function of the computational
time. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance
predictions of a SMA based substrate applicable to deformable mirrors. We took in detail into account the possibility
to change the focal length of the mirror keeping a satisfactory image quality. Finally a possible approach
with some preliminary results for an efficient control system for the strongly non-linear SMA actuators will be
presented.
The alert did not successfully save. Please try again later.
M. Riva, P. Bettini, L. Di Landro, G. Sala, F. M. Zerbi, "Smart structures for deformable mirrors actuated by shape memory alloy," Proc. SPIE 7739, Modern Technologies in Space- and Ground-based Telescopes and Instrumentation, 77391M (21 July 2010); https://doi.org/10.1117/12.857159