You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 November 2010Double-resonance optical-pumping spectra of rubidium 5S1/2 - 5P3/2 - 4D3/2
transitions and frequency stabilization of 1.5-micrometer laser
We demonstrate the spectra of 87Rb 5S1/2 - 5P3/2 - 4D3/2 transitions by utilizing the double-resonance optical-pumping
(DROP) and optical-optical double-resonance (OODR) techniques, respectively. The DROP spectrum, compared with
the traditional OODR spectrum, show a much better signal-to-noise ratio (SNR). Paying special attention to the influence
of alignment of lasers where the coupling and probe beams are counter-propagation and co-propagation on DROP
spectrum, so as to further narrow the spectral width by means of electromagnetically induced transparency (EIT). When
-the frequency of 1.5μm fiber-pigtailed butterfly-type distributed-feedback (DFB) diode laser is stabilized to the DROP
spectrum of 87Rb 5P3/2 - 4D3/2 transition, the preliminary result of residual frequency jitter after stabilization is ~ ±1.3
MHz within 60 s.
The alert did not successfully save. Please try again later.
Jing Gao, Jie Wang, Baodong Yang, Tiancai Zhang, Junmin Wang, "Double-resonance optical-pumping spectra of rubidium 5S1/2 - 5P3/2 - 4D3/2 transitions and frequency stabilization of 1.5-micrometer laser," Proc. SPIE 7846, Quantum and Nonlinear Optics, 784618 (4 November 2010); https://doi.org/10.1117/12.871685