You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 February 2011Optimizing quantum efficiency in a stacked CMOS sensor
Optimizing quantum efficiency of image sensors, whether CCD or CMOS, has usually required backside thinning to
bring the photon receiving surface close to the charge generation elements. A new CMOS sensor architecture has been
developed that permits high-fill-factor photodiodes to be placed at the silicon surface without the need for backside
thinning. The photodiode access provided by this architecture permits application of highly-effective anti-reflection
coatings on the input surface and construction of a mirror inside the silicon below the photodiodes to effectively double
the optical thickness of the silicon charge generation volume. Secondary benefits of this architecture include prevention
of light from reaching the CMOS circuitry under the photodiodes, improvement of near-infrared quantum efficiency, and
reduction in optical artifacts caused by reflections from the sensor surface.
Utilizing these techniques, a sensor is being constructed with 4096 x 4096 pixels 4.8 μm square with 95% fill factor
backed by a mirror tuned to the 400-700 nm visible band and a front-surface anti-reflectance coating. The quantum
efficiency is expected to exceed 80% through the visible and the global shutter extinction ratio should exceed 106:1. The
sensors have been fabricated and first test data is due in February 2011.
The alert did not successfully save. Please try again later.
Rob Hannebauer, Sang Keun Yoo, David L. Gilblom, Alexander D. Gilblom, "Optimizing quantum efficiency in a stacked CMOS sensor," Proc. SPIE 7875, Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, 787505 (16 February 2011); https://doi.org/10.1117/12.873610