You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 January 2011Large-scale planar lightwave circuits
By leveraging advanced wafer processing and flip-chip bonding techniques, we have succeeded in hybrid integrating a
myriad of active optical components, including photodetectors and laser diodes, with our planar lightwave circuit (PLC)
platform. We have combined hybrid integration of active components with monolithic integration of other critical
functions, such as diffraction gratings, on-chip mirrors, mode-converters, and thermo-optic elements. Further process
development has led to the integration of polarization controlling functionality. Most recently, all these technological
advancements have been combined to create large-scale planar lightwave circuits that comprise hundreds of optical
elements integrated on chips less than a square inch in size.