You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 April 2011EUV flare and proximity modeling and model-based correction
The introduction of EUV lithography into the semiconductor fabrication process will enable a continuation
of Moore's law below the 22 nm technology node. EUV lithography will, however, introduce new and
unwanted sources of patterning distortions which must be accurately modeled and corrected on the
reticle. Flare caused by scattered light in the projection optics is expected to result in several nanometers of
on-wafer dimensional variation, if left uncorrected. Previous work by the authors has focused on
combinations of model-based and rules-based approaches to modeling and correction of flare in EUV
lithography. Current work to be presented here focuses on the development of an all model-based approach
to compensation of both flare and proximity effects in EUV lithography. The advantages of such an
approach in terms of both model and OPC accuracy will be discussed. In addition, the authors will discuss
the benefits and tradeoffs associated with hybrid OPC approaches which mix both rules-based and modelbased
OPC. The tradeoffs to be explored include correction time, accuracy, and data volume.
The alert did not successfully save. Please try again later.
Christian Zuniga, Mohamed Habib, James Word, Gian F. Lorusso, Eric Hendrickx, Burak Baylav, Raghu Chalasani, Michael Lam, "EUV flare and proximity modeling and model-based correction," Proc. SPIE 7969, Extreme Ultraviolet (EUV) Lithography II, 79690T (5 April 2011); https://doi.org/10.1117/12.879488