You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
25 October 2011Polarization entangled photon pair generation in optical fibers with birefringence
Spontaneous four-wave mixing (SFWM) in optical fibers is an important way to generate correlated/entangled photon pairs. When the pulsed pump light passes through the optical fiber, two kinds of SFWM will take place simultaneously. One is scalar scattering processes, in which two annihilated pump photons and generated photon pair are all polarized along the same fiber polarization axis. The other is vector scattering processes, in which two annihilated pump photons are polarized along different fiber polarization axes, either to the two photons of the generated pair. If the fiber has large group birefringence, the intensity of vector scattering processes will be suppressed at the phase matching frequencies of the scalar scattering processes. On the other hand, the walk-off effect of the pump pulse components polarized along the two fiber polarization axes also suppresses the vector scattering processes. Hence, by proper pump polarization and signal/idle frequency selection, photon pairs can be generated only by the two independent scalar scattering processes in optical fibers with birefringence, which provide a simple way to realize polarization entangled photon pair generation. In this paper, related experiments based on the high nonlinearity microstructure fiber (HN-MSF) with group birefringence and polarization maintained dispersion shifted fiber (PM-DSF) are introduced, showing their potential on developing practical quantum light sources.
The alert did not successfully save. Please try again later.
Wei Zhang, Qiang Zhou, Pengxiang Wang, Yidong Huang, Jiangde Peng, "Polarization entangled photon pair generation in optical fibers with birefringence," Proc. SPIE 8011, 22nd Congress of the International Commission for Optics: Light for the Development of the World, 80114P (25 October 2011); https://doi.org/10.1117/12.902030