Paper
26 May 2011 Optimization of SAM-based multilayer SERS substrates for intracellular analyses: the effect of terminating functional groups
Author Affiliations +
Abstract
Surface-enhanced Raman scattering (SERS) has become an attractive analytical tool for intracellular analyses due to its minimally invasive nature and molecular specificity. However, highly reproducible and optimized SERS substrates have been seen as a key to developing SERS as a reliable analytical methodology. This research focuses on optimizing self assembled monolayer (SAM)-based multilayer SERS substrates for a wide range of applications, including ultratrace detection of biomolecules within individual living cells. Multilayer SERS substrates are comprised of alternating layers of metal film and dielectric spacer cast on a monolayer of nanostructures. Using these substrates, varying degrees of SERS enhancement factors (EF) have been achieved, some as large as 10-fold relative to optimized single film over nanostructures substrates. To gain a mechanistic understanding of multilayered SERS enhancements, SAMs have been used to systematically vary spacer thickness. The results revealed spacer-dependent SERS EFs. To further the understanding of multilayer SERS enhancement, this work discusses the use of terminating functional groups in the optimization of SAM multilayer SERS substrates. SAMs having various functional groups were used as dielectric spacers to systematically vary the dielectric constant. To investigate the effect of the pH on the uniformity of the SAMs and their multilayer SERS enhancement, SAMs were formed in alkylthiol solutions of different pH and the subsequent SERS enhancement were evaluated. It was found that using alklythiol SAMs with appropriate terminating functional groups the SAM multilayer can achieve SERS EFs ranging between 108 and1010 and the substrates yielded highly reproducible SERS signals. The effect of the pH on the SERS enhancement is selective on the type of the terminating functional group of the alkylthiol used for SAM formation.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Charles K. Klutse and Brian M. Cullum "Optimization of SAM-based multilayer SERS substrates for intracellular analyses: the effect of terminating functional groups", Proc. SPIE 8025, Smart Biomedical and Physiological Sensor Technology VIII, 802502 (26 May 2011); https://doi.org/10.1117/12.882309
Lens.org Logo
CITATIONS
Cited by 4 scholarly publications and 5 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Multilayers

Surface enhanced Raman spectroscopy

Metals

Self-assembled monolayers

Raman spectroscopy

Dielectrics

Analytical research

Back to Top