You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 May 2011Nanoscale engineering: optimizing electron-hole kinetics of quantum dot solar cells
We report the substantial increase in power efficiency in InAs/GaAs quantum dot (QD) solar cells due to n-doping of the inter-dot space in p+-δ-n+ structures and investigate the physical mechanisms that provide this significant improvement. We have compared the GaAs reference cell to undoped, n-doped and p-doped QD solar cell structures and found that the short circuit current, JSC, of the undoped QD solar cell is comparable to that of the GaAs reference cell. On the other hand, while p-doping deteriorates the device performance, n-doping significantly increases JSC without degradation of the open circuit voltage, VOC. The photovoltaic device, n-doped to provide approximately six electrons per dot, demonstrates 60% increase in JSC, from 15.07 mA/cm2 to 24.30 mA/cm2. Strong increase in the photoresponse and JSC of the IR portion of the solar spectrum has been observed for the n-doped structures. From the photoluminescence data, the electron capture noticeably dominates over hole capture leading to an accumulation of electrons in the dots. We have observed that QDs with built-in charge (Q-BIC) enhances harvesting of IR energy, suppresses the fast electron capture process, and stabilizes the open circuit voltage. All of these factors lead to a significant improvement of the cell efficiency.
The alert did not successfully save. Please try again later.
K. A. Sablon, V. Mitin, A. Sergeev, J. W. Little, N. Vagidov, K. Reinhardt, K. A. Olver, "Nanoscale engineering: optimizing electron-hole kinetics of quantum dot solar cells," Proc. SPIE 8035, Energy Harvesting and Storage: Materials, Devices, and Applications II, 80350M (17 May 2011); https://doi.org/10.1117/12.883307