You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 September 2011Hyperspectral measurement of the scattering of polarized
light by skin
The goal of this study is to develop a spectropolarimeter for purposes of assessing polarization signatures in
skin scattering on a regional scale. Prior research has that certain skin lesions have identifiable polarization
signatures;1-3 however, those studies were limited to single lesion evaluation and are not convenient for screening
patients with many suspicious legions. As a precursor to the future instrument, a simple actively illuminated
Stokes spectropolarimeter was constructed to gather preliminary data about expected signatures and the required
performance (resolution, wavelength, polarization state, etc.). This spectropolarimeter consists of a rotating
retarder and a hyperspectral camera4 that scans through wavelengths by means of a Liquid Crystal Tunable
Filter (LCTF). Data is captured in a serial fashion, where LCTF scans through eight wavelengths at each of the
four retarder orientations. With a single acquisition taking 23 seconds to complete, it makes the issue of image
registration very important. After proper alignment, the acquired images reveal that wavelength-dependent
polarization signatures exist on a regional scale. In particular, it was found that polarization factors such as
Degree of Linear Polarization (DoLP) tend to suppress many uninteresting skin features like wrinkles and skin
texture, while capturing information that is not necessarily apparent in the intensity image.
The alert did not successfully save. Please try again later.
Andrey S. Alenin, Lynne Morrison, Clara Curiel, J. Scott Tyo, "Hyperspectral measurement of the scattering of polarized light by skin," Proc. SPIE 8160, Polarization Science and Remote Sensing V, 816014 (9 September 2011); https://doi.org/10.1117/12.895552