You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 October 2011New phasor reconstruction for speckle imaging
We will present results for new object spectrum phasor reconstruction methods in speckle imaging. Each phasor
reconstruction algorithm results from minimizing a very naturally defined weighted-least-squares error function. Once
we pick a phasor-based error function, the remaining steps in our algorithms are developed by setting the error function
variation, with respect to each phasor element, to zero. The resulting coupled nonlinear equations for the minimum error
phasor array are then solved iteratively, locating the error function minimum. In these applications, we will specifically
compare and contrast three implementations: 1) Knox-Thompson; 2) bispectrum, using two unit-shift bispectrum planes;
3) bispectrum, using four bispectrum planes. Although we develop and minimize error functions for three specific singleaperture
speckle methods, the approach readily generalizes to other cases.
The alert did not successfully save. Please try again later.
Gregory C. Dente, Michael L. Tilton, "New phasor reconstruction for speckle imaging," Proc. SPIE 8178, Optics in Atmospheric Propagation and Adaptive Systems XIV, 81780I (10 October 2011); https://doi.org/10.1117/12.899404