You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 March 2012Red laser attenuation in biological tissues: study of the inflammatory process and pigmentation influence
Several studies indicate that low level laser therapy (LLLT) accelerates the healing process, however, for a determined
pathology, dosimetry remains difficult to be established. To understand the tissue optical properties under different
conditions is extremely relevant since the dose delivered to the target tissue is known to be critical. The skin
pigmentation influence on the laser attenuation is not yet well established on different mice lineages or human ethnical
groups, making the dose problematic. Along the same line, inflammatory processes may cause similar problems since the
tissues in this condition change their optical properties due to inflammatory cell accumulation. This work evaluated the
attenuation pattern of a HeNe laser (λ=632.8 nm) using ex vivo skin samples from Balb/C and C57BL/6 mice under
inflammatory stages induced in their paw by local carrageenan inoculation. The samples were placed between two
microscope slides, and a CCD camera was placed orthogonal to the beam path. The intensity distribution of the scattered
light was photographed in grayscale and analyzed by ImageJ software. Our findings suggest that even slight differences
of the epithelial pigmentation could result in a relevant dose loss delivered to the deeper tissues. The increase of the
inflammatory cell density in the connective tissue indicated a highly scattering area also resulting in a dose loss for the
deeper tissues when compared to control group.
The alert did not successfully save. Please try again later.
Caetano P. Sabino, Daiane T. Meneguzzo, Endi Benetti, Ilka T. Kato, Renato A. Prates, Martha S. Ribeiro, "Red laser attenuation in biological tissues: study of the inflammatory process and pigmentation influence," Proc. SPIE 8211, Mechanisms for Low-Light Therapy VII, 821105 (9 March 2012); https://doi.org/10.1117/12.907400