You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 March 2012Fluorescence angular domain imaging of skin tissue phantoms using intralipid-infused solids
Optical imaging through biological tissue has the significant problems of scattering which degrades the image resolution
and quality. Research has shown that Angular Domain Imaging (ADI) improves image quality by filtering out the
scattered light in the biological tissue images based on the angular direction of photons. The advantage of this technique
is that it is independent of the wavelength, coherent, pulse, or duration compared to OCT or time domain. This allows us
to couple ADI with conventional fluorescence imaging technique. Previous work was creating test media by varying
Intralipid/water concentration to produce different scattering levels. This showed difficulties in producing a consistent
scattering medium in liquid states. Hence, ideally we want a reusable solid medium which has a stable scattering
characteristic. Our target is to investigate fluorescence ADI on skin with cancerous collagen tissue where healthy
collagen fluoresces while the cancerous collagen tissue does not. To mimic the characteristic of skin, a solid scattering
medium over a patterned fluorescence material with non-emitting structures is created. We used a solid agar medium, or
a transparent polymer, infused with Intralipid at different concentrations, as the scattering medium. The solid media with
similar scattering characteristic of skin (μs = 20cm-1, g = 0.85) is placed on top of a fluorescence plastic (415nm
excitation, ≈ 530nm emission) which is patterned by strips of non-emitting structures (200-400μm). Using small
apertures with acceptance angles of 0.171° a distance away from the solid scattering medium, these non-emitting
structures are detectable at shallow scattering tissue depth (1-2mm).
The alert did not successfully save. Please try again later.
Rongen L. K. Cheng, Michael J. Phang, Rahul M. Thomas, Nick Pfeiffer, Glenn H. Chapman, Bozena Kaminska, "Fluorescence angular domain imaging of skin tissue phantoms using intralipid-infused solids," Proc. SPIE 8221, Optical Interactions with Tissue and Cells XXIII, 822119 (6 March 2012); https://doi.org/10.1117/12.909471