Translator Disclaimer
27 February 2012 Converting conventional stereo pairs to multiview sequences using morphing
Author Affiliations +
Proceedings Volume 8288, Stereoscopic Displays and Applications XXIII; 828828 (2012)
Event: IS&T/SPIE Electronic Imaging, 2012, Burlingame, California, United States
Autostereoscopic multi view displays require multiple views of a scene to provide motion parallax. When an observer changes viewing angle different stereoscopic pairs are perceived. This allows new perspectives of the scene to be seen giving a more realistic 3D experience. However, capturing arbitrary number of views is at best cumbersome, and in some occasions impossible. Conventional stereo video (CSV) operates on two video signals captured using two cameras at two different perspectives. Generation and transmission of two views is more feasible than that of multiple views. It would be more efficient if multiple views required by an autostereoscopic display can be synthesized from these sparse set of views. This paper addresses the conversion of stereoscopic video to multiview video using the video effect morphing. Different morphing algorithms are implemented and evaluated. Contrary to traditional conversion methods, these algorithms disregard the physical depth explicitly and instead generate intermediate views using sparse sets of correspondence features and image morphing. A novel morphing algorithm is also presented that uses scale invariant feature transform (SIFT) and segmentation to construct robust correspondences features and qualitative intermediate views. All algorithms are evaluated on a subjective and objective basis and the comparison results are presented.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Roger Olsson, Vamsi Kiran Adhikarla, Sebastian Schwarz, and Mårten Sjöström "Converting conventional stereo pairs to multiview sequences using morphing", Proc. SPIE 8288, Stereoscopic Displays and Applications XXIII, 828828 (27 February 2012);


Back to Top