You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 April 2012Fiber optic shape sensing for monitoring of flexible structures
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil,
mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and
suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions.
By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to
provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration
of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position
sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound
geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical
Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length.
Laboratory testing of the extended-range shape sensing technology shows
The alert did not successfully save. Please try again later.
Evan M. Lally, Matt Reaves, Emily Horrell, Sandra Klute, Mark E. Froggatt, "Fiber optic shape sensing for monitoring of flexible structures," Proc. SPIE 8345, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012, 83452Y (6 April 2012); https://doi.org/10.1117/12.917490