You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 June 2012Task-specific snapshot Mueller matrix channeled spectropolarimeter optimization
We have developed a tool to simulate reconstruction behavior of a snapshot Mueller matrix channeled spectropolarimeter
in presence of noise. A shortcoming of channeled spectropolarimeters is that with a large number
of channels, each channel has to be narrow, which limits the reconstruction accuracy and provides a bandlimit
constraint on the object. The concept of making partial Mueller matrix measurements can be extended to a channeled
system by considering polarimeter designs that make irrelevant Mueller matrix elements unreconstructable,
while decreasing the number of channels and subsequently increasing the bandwidth available to each channel.
This tool optimizes the distribution of the available bandwidth towards the polarization elements that we care
about most. A generic linear systems model of a spectropolarimeter with four variable retarders allows us to
construct a matrix that maps Mueller matrix elements into corresponding channels. A pseudo-inverse of that
matrix enables the reconstruction of Mueller matrix elements from channels. By specifying a mask vector, we can
control the subjective importance of each of the reconstructed elements and weigh their error contribution accordingly.
Finally, searching the design space allows us to find a design that maximizes the Signal-to-Noise-Ratio
(SNR) for a specific partial Mueller matrix measurement task.
The alert did not successfully save. Please try again later.
Andrey S. Alenin, J. Scott Tyo, "Task-specific snapshot Mueller matrix channeled spectropolarimeter optimization," Proc. SPIE 8364, Polarization: Measurement, Analysis, and Remote Sensing X, 836402 (8 June 2012); https://doi.org/10.1117/12.921911