You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
In low light conditions, visible light face identification is infeasible due to the lack of illumination. For nighttime
surveillance, thermal imaging is commonly used because of the intrinsic emissivity of thermal radiation from the
human body. However, matching thermal images of faces acquired at nighttime to the predominantly visible
light face imagery in existing government databases and watch lists is a challenging task. The difficulty arises
from the significant difference between the face's thermal signature and its visible signature (i.e. the modality
gap). To match the thermal face to the visible face acquired by the two different modalities, we applied face
recognition algorithms that reduce the modality gap in each step of face identification, from low-level analysis to
machine learning techniques. Specifically, partial least squares-discriminant analysis (PLS-DA) based approaches
were used to correlate the thermal face signatures to the visible face signatures, yielding a thermal-to-visible face
identification rate of 49.9%. While this work makes progress for thermal-to-visible face recognition, more efforts
need to be devoted to solving this difficult task. Successful development of a thermal-to-visible face recognition
system would significantly enhance the Nation's nighttime surveillance capabilities.
The alert did not successfully save. Please try again later.
Jonghyun Choi, Shuowen Hu, S. Susan Young, Larry S. Davis, "Thermal to visible face recognition," Proc. SPIE 8371, Sensing Technologies for Global Health, Military Medicine, Disaster Response, and Environmental Monitoring II; and Biometric Technology for Human Identification IX, 83711L (21 May 2012); https://doi.org/10.1117/12.920330