You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
7 November 2012Numerical modeling and performance optimization of QEPAS spectrophone
The spectrophone performance for QEPAS is numerically investigated by using a finite element method. The effect of
varying system parameters such as the excitation frequency, relative position between the acoustic resonant tubes and the
quartz tuning fork, and the dimensions of resonant tubes are examined A pair of rigid tubes, each with a length of 5.1
mm and an inner diameter of 0.2 mm, positioned 0.6 μm down from the opening and 20 μm away from the edge of
tuning fork is suggested for optimal spectrophone performance.
Yingchun Cao,Wei Jin, andHoi Lut Ho
"Numerical modeling and performance optimization of QEPAS spectrophone", Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fiber Sensors, 842167 (7 November 2012); https://doi.org/10.1117/12.973700