You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 May 2012Laser scattering by transcranial rat brain illumination
Due to the great number of applications of Low-Level-Laser-Therapy (LLLT) in Central Nervous System
(CNS), the study of light penetration through skull and distribution in the brain becomes extremely
important. The aim is to analyze the possibility of precise illumination of deep regions of the rat brain,
measure the penetration and distribution of red (λ = 660 nm) and Near Infra-Red (NIR) (λ = 808 nm)
diode laser light and compare optical properties of brain structures. The head of the animal (Rattus
Novergicus) was epilated and divided by a sagittal cut, 2.3 mm away from mid plane. This section of rat's
head was illuminated with red and NIR lasers in points above three anatomical structures: hippocampus,
cerebellum and frontal cortex. A high resolution camera, perpendicularly positioned, was used to obtain
images of the brain structures. Profiles of scattered intensities in the laser direction were obtained from
the images. There is a peak in the scattered light profile corresponding to the skin layer. The bone layer
gives rise to a valley in the profile indicating low scattering coefficient, or frontal scattering. Another
peak in the region related to the brain is an indication of high scattering coefficient (μs) for this tissue.
This work corroborates the use of transcranial LLLT in studies with rats which are subjected to models of
CNS diseases. The outcomes of this study point to the possibility of transcranial LLLT in humans for a
large number of diseases.
The alert did not successfully save. Please try again later.
Marcelo V. P. Sousa, Renato Prates, Ilka T. Kato, Caetano P. Sabino, Luis C. Suzuki, Martha S. Ribeiro, Elisabeth M. Yoshimura, "Laser scattering by transcranial rat brain illumination," Proc. SPIE 8427, Biophotonics: Photonic Solutions for Better Health Care III, 842728 (8 May 2012); https://doi.org/10.1117/12.912616