Paper
4 May 2012 A novel deformable mirror with curvature and tip/tilt control based on the spider actuator concept
Daniel Rodriguez Sanmartin, Tim Button, Carl Meggs, Alan Michette, Slawka Pfauntsch, Ady James, Graham Willis, Camelia Dunare, Tom Stevenson, William Parkes
Author Affiliations +
Abstract
The Smart X-Ray Optics (SXO) project comprises a UK-based consortium developing active/adaptive micro-structured optical arrays (MOAs). MOA devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels. Adaptability is achieved using a combination of piezoelectric actuators, which bend the edges of the silicon chip, and a spider structure, which forms a series of levers connecting the edges of the chip with the active area at the centre, effectively amplifying the bend radius. The spider actuation concept, in combination with deep silicon etching stopped close to the surface, can also be used to create deformable mirrors where the curvature and tip/tilt angles of the mirror can be controlled. Finite Element Analysis (FEA) modelling, carried out for the optimization of the spider MOA device, indicates that deformable mirrors with curvature varying from flat to 5cm ROC and control over the tip/tilt angles of the mirror of +/-3mrad could be achieved. Test spider structures, manufactured using a Viscous Plastic Processing Process for the PZT piezoelectric actuators and a single wet etch step using <111> planes in a (110) silicon wafer for both the silicon channels and the spider structure, have been bent to a radius of curvature smaller than 5 cm. This paper evaluates the spider MOA's concept as a means to achieve deformable mirrors with controllable ROC and control over the tip/tilt angles. FEA modelling results are compared with obtained characterization data of prototype structures. Finally, manufacturing and integration methods and design characteristics of the device, such its scalability, are also discussed.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniel Rodriguez Sanmartin, Tim Button, Carl Meggs, Alan Michette, Slawka Pfauntsch, Ady James, Graham Willis, Camelia Dunare, Tom Stevenson, and William Parkes "A novel deformable mirror with curvature and tip/tilt control based on the spider actuator concept", Proc. SPIE 8429, Optical Modelling and Design II, 84291H (4 May 2012); https://doi.org/10.1117/12.922815
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Silicon

Semiconducting wafers

Finite element methods

Manufacturing

Ferroelectric materials

Electrodes

Back to Top