Paper
15 October 2012 Study of stochastic resonance in a quantum dot network
Hiroki Fujino, Takahide Oya
Author Affiliations +
Abstract
This paper reports a study of stochastic resonance in a huge quantum dot network for single-electron (SE) circuits. Such circuits, which are controlled by the Coulomb blockade, are one type of next-generation information-processing device. However, they are very sensitive to noises such as thermal noise and device mismatch noise. Thus, we introduce the stochastic resonance phenomenon into the circuit to improve its noise tolerance. Stochastic resonance is a phenomenon that was discovered in the brains of living things in noisy environments and was modeled for neural networks. When the phenomenon occurs, its harnessing of noise energy makes weak signals become clear. In current research, SE devices that operate with stochastic resonance have been reported. However, signals were attenuated in particularly noisy environments. In contrast, it was reported that a huge molecular network amplified weak signals by harnessing noise energy. The report said the current-voltage characteristics of the molecular network described the Coulomb blockade under a noisy environment. Thus, a huge quantum dot network that is partly similar to a molecular network is expected to amplify the weak signal harnessing noise, when the current-voltage characteristics of the network show the Coulomb blockade. To confirm this, in this study we use the Monte Carlo method to simulate the noisy-environment operation of a quantum dot network comprising quantum dots and tunneling junctions. We observe the current-voltage characteristics of the network, when changing the network size (5×5, 10×10, and 100×100) and the noise intensity (0 K, 2 K, 5 K, and 10 K for operating temperature, and 0%, 5%, 10%, and 30% for device mismatch). As a result, we are able to observe the Coulomb blockade under the appropriate noise strength, which in this study is 5 K or less with thermal noise, and 30% with device mismatch. From the results, we conclude the network operates correctly under appropriate noise strength. Moreover, the noise energy amplifies the network current, indicating that SE circuits can function as signal-amplifying devices.
© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hiroki Fujino and Takahide Oya "Study of stochastic resonance in a quantum dot network", Proc. SPIE 8463, Nanoengineering: Fabrication, Properties, Optics, and Devices IX, 84631D (15 October 2012); https://doi.org/10.1117/12.928922
Lens.org Logo
CITATIONS
Cited by 6 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantum dots

Stochastic processes

Interference (communication)

Electrons

Thermal effects

Capacitance

Monte Carlo methods

RELATED CONTENT


Back to Top