You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 October 2012Negative refraction and superlensing in two-dimensional triangular lattice graded photonic crystals
Negative refraction attracted great interest and quickly became the subject of extensive worldwide research thanks to the many novel optical phenomena it can enable. One of the most exciting applications of negative refraction is the possibility of imaging with sub-wavelength resolution, which is often called superlensing. Recently, it has been shown that photonic crystals (PhCs) composed of synthetic periodic dielectric materials can exhibit an extraordinarily high nonlinear dispersion which causes effects such as negative refraction and self-focusing properties that are determined by the characteristics of their photonic band structures and equal frequency contours (EFCs). In this paper we have theoretically studied the negative refraction in two-dimensional (2D) triangular lattices graded photonic crystal (GPC) which constructed by varying the photonic crystal parameters so that its effective refractive index changes along the transverse direction of the slab. By using Plane Wave Expansion (PWE) method and Finite-Difference Time-Domain (FDTD) method we have studied the photonic band structure, equal frequency contours and the electric field distribution of the designed graded photonic crystal. Numerical simulations show that negative refraction and
superlensing can be realized in the designed graded photonic crystal.
Meiling Liu,Maojin Yun,Feng Xia, andJian Liang
"Negative refraction and superlensing in two-dimensional triangular lattice graded photonic crystals", Proc. SPIE 8497, Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VI, 849717 (15 October 2012); https://doi.org/10.1117/12.928562