Translator Disclaimer
22 March 2013 Longitudinally graded optical fibers
Author Affiliations +
Described herein, for the first time to the best of our knowledge, are results on optical fibers possessing significant compositional gradations along its length due to longitudinal control of the core glass composition. More specifically, MCVD-derived germanosilicate fibers were fabricated that exhibited a gradient of up to about 0.55 weight % GeO2 per meter. These gradients are about 1900 times greater than previously reported fibers possessing longitudinal changes in composition. The refractive index difference is shown to change by about 0.001, representing a numerical aperture change of about 10%, over a fiber length of less than 20 m. The lowest attenuation measured from the present longitudinally-graded fiber (LGF) was 82 dB/km at a wavelength of 1550 nm, though this is shown to result from extrinsic process-induced factors and could be reduced with further optimization. The stimulated Brillouin scattering (SBS) spectrum from the LGF exhibited a 4.4 dB increase in the spectral width, and thus reduction in Brillouin gain, relative to a standard commercial single mode fiber, over a fiber length of only 17 m. The method employed is very straight-forward and provides for a wide variety of longitudinal refractive index and acoustic velocity profiles, as well as core shapes, which could be especially valuable for SBS suppression in high-energy laser systems. Next generation analogs, with longitudinally-graded compositional profiles that are very reasonable to fabricate, are shown computationally to be more effective at suppressing SBS than present alternatives, such as externally-applied temperature or strain gradients.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
A. Evert, A. James, T. Hawkins, P. Foy, L. Dong, R. Stolen, J. Ballato, P. Dragic, and R. Rice "Longitudinally graded optical fibers", Proc. SPIE 8601, Fiber Lasers X: Technology, Systems, and Applications, 86010J (22 March 2013);


Back to Top