You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 February 2013Effect of the degree of phase-correlation of laser sources on the transmission and optical coherent detection in radio-over-fibre systems
The deployment of high capacity Radio-over-Fiber (RoF) systems rely, among many aspects, on the capability to efficiently generate, transport, and detect millimeter-wave carriers modulated at high data rates. Photonic approaches based on the heterodyne beating of two free-running laser sources have been proposed as an alternative to generate multi-Gbps quadrature phase modulated signals imposed on millimeter wave carriers. Implementing photonic approaches in the down-link avoids the need for electronic generation of high frequency carriers and decreases the requirements at the base band electronics. In addition, implementing complex modulation formats overcomes some of the typical issues found in intensity modulation direct detection approaches such as non linearity, receiver sensitivity and dynamic range.
In this work, the performance improvement of a coherent RoF system carrying 10 Gbps QPSK signals is numerically analyzed in terms of both the frequency linewidth and the degree of phase correlation between the lasers utilised at the down-link (for the optical heterodyne beating) and at the up-link (for the optical coherent detection). Relative to phase correlated lasers featuring linewidths of 5 MHz, the peak power of the 60 G Hz carrier generated at the down-link is reduced by 8 dB for un-correlated lasers. In addition, the error vector magnitude of the received signal at the up-link is improved from over 20% (for un-correlated lasers and linewidths of 5 MHz) to around 15% (for correlated lasers) at an optical received power of -30 dBm. The results obtained reinforce the idea of using coherent comb laser sources with phase correlated modes located at the Central Office. It also motivates the eventual deployment of techniques to control the degree of phase correlation between the lasers used as signal and local oscillator at the optical coherent receivers.
The alert did not successfully save. Please try again later.
Ramón Maldonado-Basilio, Ran Li, Sawsan Abdul-Majid, Hamdam Nikkhah, Kin-Wai Leong, Trevor J. Hall, "Effect of the degree of phase-correlation of laser sources on the transmission and optical coherent detection in radio-over-fibre systems," Proc. SPIE 8645, Broadband Access Communication Technologies VII, 86450E (4 February 2013); https://doi.org/10.1117/12.2004732