Translator Disclaimer
13 March 2013 Pulse sequence based multi-acquisition MR intensity normalization
Author Affiliations +
Proceedings Volume 8669, Medical Imaging 2013: Image Processing; 86692H (2013)
Event: SPIE Medical Imaging, 2013, Lake Buena Vista (Orlando Area), Florida, United States
Intensity normalization is an important preprocessing step in magnetic resonance (MR) image analysis. In MR images (MRI), the observed intensities are primarily dependent on (1) intrinsic magnetic resonance properties of the tissues such as proton density (PD), longitudinal and transverse relaxation times (T1 and T2 respectively), and (2) the scanner imaging parameters like echo time (TE), repeat time (TR), and flip angle (α). We propose a method which utilizes three co-registered images with different contrast mechanisms (PD-weighted, T2-weighted and T1-weighted) to first estimate the imaging parameters and then estimate PD, T1, and T2 values. We then normalize the subject intensities to a reference by simply applying the pulse sequence equation of the reference image to the subject tissue parameters. Previous approaches to solve this problem have primarily focused on matching the intensity histograms of the subject image to a reference histogram by different methods. The fundamental drawback of these methods is their failure to respect the underlying imaging physics and tissue biology. Our method is validated on phantoms and we show improvement of normalization on real images of human brains.
© (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Amod Jog, Snehashis Roy, Aaron Carass, and Jerry L. Prince "Pulse sequence based multi-acquisition MR intensity normalization", Proc. SPIE 8669, Medical Imaging 2013: Image Processing, 86692H (13 March 2013);

Back to Top