You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2013Noise reduction using nonadditive Q-Gaussian filters in magnetic resonance images
Spatial filtering is a ubiquitously used image processing approach to reduce noise, and frequently part of image processing pipelines. The most commonly used function is the Gaussian. Recently, a generalization of the Gaussian function consistent with nonadditive statistics was proposed. Although generalized Gaussian has been used for image filtering, no study assessed its performance for medical images. Here, we present two classes of Q-Gaussian filters as noise reduction methods. We evaluated filter performance for magnetic resonance images (MRI) in cerebral, thoracic and abdominal regions. Fractal dimension estimations from images were paired with filter effectiveness. Results showed that Q-Gaussian filters have improved filtering effective gain, when compared to classical Gaussian filtering. Furthermore, it is observed filter gain dependence with fractal dimension. The obtained results suggest that the Q-Gaussian filters are better for noise reduction than classic Gaussian filter when dealing with fractal MRI or fractal noise.
The alert did not successfully save. Please try again later.
Isaias J. A. Soares, Luiz O. Murta Jr., "Noise reduction using nonadditive Q-Gaussian filters in magnetic resonance images," Proc. SPIE 8669, Medical Imaging 2013: Image Processing, 86692J (13 March 2013); https://doi.org/10.1117/12.2007119