You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 February 2013Region detection in medical images using HOG classifiers and a body landmark network
Automatic detection of anatomical structures and regions in 3D medical images is important for several computer aided diagnosis tasks. In this work, a new method for simultaneous detection of multiple anatomical areas is proposed. The method consists of two steps: first, single rectangular region candidates are detected independently using 3D variants of Histograms of Oriented Gradients (HOG) features. These features are robust against small changes between regions in rotation and scale which typically occur between different individuals. In a second step, the positions of the detected candidates are refined by incorporating a body landmark network that exploits anatomical relations between different structures. The landmark network consists of a principle component based statistical modeling of the relative positions between the detected regions in training images. The method has been evaluated on thoracic/abdominal CT images of the portal venous phase. In 216 CT images, eight different structures have been trained. Results show an increase in performance using the combination of HOGs and the landmark network in comparison to using independent classifiers without anatomical relations.
The alert did not successfully save. Please try again later.
Marius Erdt, Oliver Knapp, Klaus Drechsler, Stefan Wesarg, "Region detection in medical images using HOG classifiers and a body landmark network," Proc. SPIE 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 867004 (28 February 2013); https://doi.org/10.1117/12.2007384