You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 February 2013Risk assessment of sleeping disorder breathing based on upper airway centerline evaluation
One of the most important breathing disorders in childhood is obstructive sleep apnea syndrome which affects 2–3% of children, and the reported failure rate of surgical treatment was as high as 54%. A possible reason in respiratory complications is having reduced dimensions of the upper airway which are further compressed when muscle tone is decreased during sleep. In this study, we use Cone-beam computed tomography (CBCT) to assess the location or cause of the airway obstruction. To date, all studies analyzing the upper airway in subjects with Sleeping Disorder Breathing were based on linear, area, or volumetric measurements, which are global computations and can easily ignore local significance. Skeletonization was initially introduced as a 3D modeling technique by which representative medial points of a model are extracted to generate centerlines for evaluations. Although centerlines have been commonly used in guiding surgical procedures, our novelty lies in comparing its geometric properties before and after surgeries. We apply 3D data refinement, registration and projection steps to quantify and localize the geometric deviation in target airway regions. Through cross validation with corresponding subjects’ therapy data, we expect to quantify the tolerance threshold beyond which reduced dimensions of the upper airway are not clinically significant. The ultimate goal is to utilize this threshold to identify patients at risk of complications. Outcome from this research will also help establish a predictive model for training and to estimate treatment success based on airway measurements prior to intervention. Preliminary results demonstrate the feasibility of our approach.
The alert did not successfully save. Please try again later.
Noura Alsufyani, Rui Shen, Irene Cheng, Paul Major, "Risk assessment of sleeping disorder breathing based on upper airway centerline evaluation," Proc. SPIE 8670, Medical Imaging 2013: Computer-Aided Diagnosis, 86702M (28 February 2013); https://doi.org/10.1117/12.2006687